
Different Cube Computation Approaches: Survey
Paper

Dhanshri S. Lad #, Rasika P. Saste*
M.Tech. Student , * M.Tech. Student

Department of CSE, Rajarambapu Institute of Technology,
 Islampur(Sangli), MS, India

Abstract— Efficient computation of aggregations plays
important role in Data Warehouse systems. Multidimensional
data analysis applications aggregate data across many
dimensions looking for anomalies or unusual patterns. The
SQL aggregate functions and the GROUP BY operator are
used for aggregation. But Data analysis applications need the
N-dimensional generalization of these operators. Data Cube is
introduced which is a way of structuring data in N-dimensions
so as to perform analysis over some measure of interest. Data
cube computation is essential task in data warehouse
implementation. The precomputation of all or part of a data
cube can greatly reduce the response time and enhance the
performance of on-line analytical processing. There are
several methods for cube computation, several strategies to
cube materialization and some specific computation
algorithms, namely Multiway array aggregation, BUC, Star
Cubing, the computation of shell fragments and parallel
algorithms. But these techniques have limitation so new
MapReduce based approach is used.

Keywords— Data Cubes, Cube Computation Techniques, Star
Cubing, BUC, MapReduce

I. INTRODUCTION

 A data warehouse is a subject oriented, united, non
volatile and time-variant collection of data organized in
support of management decision-making. Several factors
distinguish data warehouses from operational databases.
Because the two systems provides quite different
functionalities and require different kinds of data, it is
necessary to maintain data warehouses separately from
operational database. In Data Warehouse systems efficient
computation of aggregations plays a key role.
 The aggregations are mentioned to as GROUP-BY’S.
Online Analytical Processing (OLAP)or multidimensional
data analysis applications typically aggregate data across
many dimensions looking for anomalies or unusual patterns.
Computing multidimensional aggregates is a performance
bottleneck for these applications. The SQL aggregate
functions and the GROUP BY operator are used for
aggregation and produce zero-dimensional or one
dimensional aggregates respectively. Data analysis
applications need the N dimensional generalization of these
operators. The Data cube is the N-dimensional
generalization of simple aggregate functions, which is
introduced by Grey[1]. In OLAP systems, a data cube is a
way of organizing data in N-dimensions so as to perform
analysis over some measure of interest. Measure is a term
used to refer numerical facts that can be algebraic
(SUM,COUNT etc.) or non-algebraic (DISTINCT, TOP-K

etc.).The data cube is used for conveniently supporting
multiple aggregates in OLAP databases. It requires
computing group-bys on all possible combinations of a list
of attributes, and is equivalent to the union of a number of
standard group-by operations.
 The cube operator is widely significant to the histogram,
roll-up, drill-down, cross-tabulation, and sub-total
constructs. The basic cube problem is to compute all of the
aggregates as efficiently as possible. Concurrently
computing the aggregates offers the opportunity to share
partitioning and aggregation costs between various group-
bys. The chief difficulty is that the cube problem is
exponential in the number of dimensions. In addition, the
size of each group-by depends upon the cardinality of its
dimensions. As many techniques are proposed for efficient
cube computation.

Our paper is organized as follows: Firstly explanation
of various cubing algorithms. Next is Limitations of these
techniques. Then MapReduce based Approach used for
data cube materialization and mining over massive data sets
using important subset of holistic measure. And last the
conclusion of our study.

II. DIFFERENT TECHNIQUES FOR CUBE COMPUTATION

1) General Cube Computation with Optimizing
Techniques : Multi- Dimensional aggregate
computation [2]

Authors extended basic sort based and hash based methods
to compute multiple group-bys by incorporating
optimizations techniques like smallest-parent, cache-results,
amortize-scans, share-sorts and share-partitions.
Smallest-parent: This optimization aims at computing a
group by from the smallest previously computed group-by.
In this, each group-by can be computed from a number of
other group bys.
Cache-results: This optimization aims at caching (in
memory) the results of a group-by from which other group-
bys are computed to reduce disk I/O.
Amortize-scans: This optimization aims at amortizing disk
reads by computing as many group-bys as possible,
together in memory.
Share-sorts: This optimization is specific to the sort-based
algorithms and aims at sharing sorting cost across multiple
group bys.
Share-partitions: This optimization is specific to the hash-
based algorithms. When the hash table is too large to fit in
memory, data is partitioned and aggregation is done for

Dhanshri S. Lad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4057-4061

www.ijcsit.com 4057

each partition that fits in memory. We can save on
partitioning cost by sharing this cost across multiple group
bys.

2) Top-Down Approach : Multi-Way array
aggregation [3]

 The computation starts from the larger group-bys and
proceeds towards the smallest group-bys. As show in below
Fig 1 :
 In this, a partition-based loading algorithm designed and
implemented to convert a relational table or

 Fig 1: Top-Down Approach

external load file to a (possibly compressed) chunked
array. There is no direct tuple comparisons.It perform
Simultaneous aggregation on multiple dimensions. In
MultiWay array aggregation Intermediate aggregate values
are re-used for computing ancestor cuboids .It cannot do
Apriori pruning means it cannot perform iceberg cube
optimization .
 In Multi-Way array aggregation, It partition arrays into
chunks (a small sub cube which fits in memory). It uses
compressed sparse array addressing: (chunk_id, offset) and
compute aggregates in ― “multiway” by visiting cube cells
in the order which minimizes the # of times to visit each
cell, and reduces memory access and storage cost.

What is the best traversing order to do multi-way
aggregation?
� Method: the planes should be sorted and computed

according to their size in ascending order
� Idea: keep the smallest plane in the main memory, fetch

and compute only one chunk at a time for the largest
plane.

� Limitation of the method: computing well only for a
small number of dimensions .

� If there are a large number of dimensions, top-down
computation and iceberg cube computation methods
can be explored.

3) Bottom-Up Approach : Bottom-Up Computation
(BUC) [4]

 BUC is an algorithm for sparse and iceberg cube
computation.BUC uses the bottom-up approach that allows
to prune unnecessary computation by recurring to A-priori
pruning strategy. if a given cell does not satisfy minsup,
then no discendant will satisfy minsup either.The Iceberg

cube problem is to compute all group-bys that satisfy an
iceberg condition.
 First, BUC partitions dataset on dimension A, producing
partitions a1, a2, a3, a4.Then, it recurses on partition a1,the
partition a1 is aggregated and BUC produces <a1,*,*,*>.

Next, it partitions a1 on dimension B. It produces
<a1,b1,*,*> and recurses on partition a1,b1. Similarly, it
produces <a1,b1,c1,*> and then <a1,b1,c1,d1>. Now, it
returns from recursion and produces <a1,b1,c1,d2> etc.
After processing partition a1, BUC processes partition a2
and so on as shown in Fig.2 below,

Fig 2 : BUC Partitioning

 BUC is sensitive to data skew and to the order of the
dimensions processing first most discriminating dimensions
improves performance. It shares partitioning costs.BUC
does not share computation between parent and child
cuboids.

4) Mixed Approach : Star cubing [8]

 Star Cubing integrate the top-down and bottom-up
methods. It explore shared dimensions .E.g., dimension A is
the shared dimension of ACD and AD. ABD/AB means
cuboid ABD has shared dimensions AB. Star cubing allows
for shared computations .e.g., cuboid AB is computed
simultaneously as ABD . Star Cubing aggregate in a top-
down manner but with the bottom-up sub-layer underneath
which will allow Apriori pruning. It’s shared dimensions
grow in bottom-up fashion. As shown in Fig 3.

Fig 3 : An Integrating method : Star Cubing

Dhanshri S. Lad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4057-4061

www.ijcsit.com 4058

Star-Cubing Algorithm—DFS on Lattice Tree
Properties of Proposed Method
Partitions the data vertically
Reduces high-dimensional cube into a set of lower
 dimensional cubes
Online re-construction of original high-dimensional
 space
Lossless reduction
Offers tradeoffs between the amount of pre-processing and
the speed of online computation
Further Implementation Considerations
Incremental Update:
Append more TIDs to inverted list
Add <tid: measure> to ID_measure table
Incremental adding new dimensions
Form new inverted list and add new fragments
Bitmap indexing
May further improve space usage and speed
Inverted index compression
Store as d-gaps
Explore more IR compression methods

5) High-Dimensional OLAP : A Minimal Cubing
Approach [9]

 In many applications, like bioinformatics, statistics and
text processing, datasets are characterized by high
dimensionality e.g. over 100 dimensions -> 2100 cuboids in
a full cube. As huge cube there is infeasible computation
time. Iceberg cube is not an ultimate solution as it cannot be
incrementally updated. In this low minsup requires too
space and high minsup gives no significant results.
 A minimal cubing approach, a new semi-online
computational model is based on the computation of shell
fragments. This method partitions ‘vertically’ a high
dimensional dataset into a set of disjoint low dimensional
datasets called fragments. Then, for each fragment, it
computes local data cube. In shell fragment efficiency is
obtained by using inverted index, i.e. a list of record-ids
associated to each dimension value. Given the pre-
computed fragment cubes, intersection among fragments is
performed online by re-assembling cuboids of the required
data cube. It reduces high dimensionality of the data cube to
lower dimensionality.Online operations of re-construction
of original dimensional space. There is Tradeoffs between
the pre-processing phase and the performance of online
computation.

6) Parallel Approaches [7] :

 Parallel Algorithms are introduced for cube computation
over small PC clusters. Algorithm BPP (Breadth-first
Writing, Partitioned, Parallel BUC), in which the dataset is
not replicated, but is range partitioned on an attribute basis.
The output of cuboids is done in a breadth-First fashion, as
opposed to the depth-first writing that BUC do. In Depth
First writing, cells may belong to different cuboids. For
example, the cell a1 belongs to cuboid A, the cell a1b1 to
cuboid AB, and the cells a1b1c1 and a1b1c2 belong to
ABC. The point is that cuboids is scattered. This clearly
incurs a high I/O over-head. It is possible to use buffering
to help the scattered writing to the disk. However, this may

require a large amount of buffering space, thereby reducing
the amount of memory available for the actual computation.
Furthermore, many cuboids may need to be maintained in
the buffers at the same time, causing extra management
overhead. In BPP, this problem is solved by breadth-first
writing, implemented by first sorting the input dataset on
the “prefix” attributes. Breadth-First I/O is a significant
improvement over the scattering I/O used in BUC.
 Another Parallel algorithm PT (Partitioned Tree) works
with tasks that are created by a recursive binary division of
a tree into two sub trees having an equal number of nodes.
In PT, there is a parameter that controls when binary
division stops.PT tries to exploit a affinity scheduling.
During processor assignment, the manager tries to assign to
a worker processor a task that can take advantage of prefix
affinity based on the root of the subtree.PT is top-down. But
interestingly, because each task is a sub tree, the nodes
within the sub tree can be traversed/computed in a bottom-
up fashion. In fact, PT calls BPP-BUC, which offers
breadth-first writing, to complete the processing. Algorithm
PT load-balances by using binary partitioning to divide the
cube lattice as evenly as possible PT is the algorithm of
choice for most situations.

III. LIMITATIONS OF EXISTING TECHNIQUES

There are three main limitations in the existing techniques:
1. They are designed for a single machine or clusters with

small number of nodes [16]. It is difficult to process
data with a single (or a few) machine(s) at many
companies where data storage is huge (e.g., terabytes
per day)

2. Many of the techniques use the algebraic measure [1]
and use this property to avoid processing groups with a
large number of tuples. This allows parallelized
aggregation of data subsets whose results are then post
processed to derive the final result. Many important
analyses over logs, involve computing holistic
(i.e.,nonalgebraic) measures. Holistic measures pose
significant challenges for distribution.

3. Existing techniques failed to detect and avoid extreme
data skew.

 Extension of cube analysis usage can be avoided by
these limitations. There is need of technique to compute
cube efficiently in parallel and identification of interesting
cube groups on important subset of holistics measures over
massive data sets. Hadoop based Mapreduce [8]
environment handles large amount of data in clusters with
thousands of machines. So MapReduce based technique
which supports holistic measures is best option for data
analysis. It helps to detect extreme data skew problem.

IV. MAPREDUCE BASED APPROACH

 Mapreduce [19] is rapidly becoming one of most
popular parallel execution frameworks. Introduced in 2004
by Google Corporation, it automatically parallelizes task
execution, given that users formulate algorithm as map and
reduce steps. Data partitioning, fault tolerance, execution
scheduling are provided by mapreduce framework itself.
Mapreduce was designed to handle large data volumes and
huge clusters (thousands of servers). MapReduce is a

Dhanshri S. Lad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4057-4061

www.ijcsit.com 4059

programming framework that allows to execute user code in
a large cluster. Hadoop [18] is an open-source
implementation of this framework. All the user has to write
two functions: Map and Reduce.
 During the Map phase, the input data are
distributed across the mapper machines, where each
machine then processes a subset of the data in parallel and
produces one or more <key; value> pairs for each data
record. Next, during the Shuffle phase, those <key, value>
pairs are repartitioned (and sorted within each partition) so
that values corresponding to the same key are grouped
together into values {v1; v2; :::} Finally, during the Reduce
phase, each reducer machine processes a subset of the
<key,{v1; v2; :::}> pairs in parallel and writes the final
results to the distributed file system. The map and reduce
tasks are defined by the user while the shuffle is
accomplished by the system.
So MR-Cube, a MapReduce-based algorithm was
introduced [13] for efficient cube computation and
identification of interesting cube groups on holistic
measures. Here each node in the lattice represents one
possible grouping/aggregation. We use the term cube region
to denote a node in the lattice and the term cube group to
denote an actual group belonging to the cube region. First
we begin by identifying a subset of holistic measures that
are easy to compute in parallel than an arbitrary holistic
measure. We call them partially algebraic measures. This
notion is inspired by common ad hoc practices for
computing a single holistic measure from an extremely
large number of data tuples.
 Then two techniques needed for effectively distribute the
data and computation workload. Value Partitioning is used
for effectively distribute data for that we are going to run
Naïve Algorithm [12].we want to perform value
partitioning only on groups that are likely to be reducer-
unfriendly and dynamically adjust the partition factor. we
adopt a sampling approach where we estimate the reducer-
unfriendliness of each cube region based on the number of
groups it is estimated to have, and perform partitioning for
all groups within the list of cube regions (a small list) that
are estimated to be reducer unfriendly.
 For effectively distribute computation we use
partitioning technique called Batch Area. Each batch area
represents a collection of regions that share a common
ancestor region.
 The combined process of identifying and value-
partitioning unfriendly regions followed by the partitioning
of regions into batches is referred to as ANNOTATE .So
lattice formed is annotated lattice.
 Extreme Data skew is most important challenge which
occurs if a few cube groups are unusually large even when
they belong to a cube region at the top of the lattice (i.e.,
those with fine granularities).This causes value partitioning
to be applied to the entire cube and therefore reduces the
efficiency of algorithm. We are looking into the use of
compressed counting data structures such as CM-Sketch
[14][17] and Log-Frequency Sketch [15] as a solution.
After Extreme data skew detection and try to avoid same,
we are using MR-Cube algorithm [13] for cube
materialization and identifying interesting cube groups.

Propose system architecture is given in below Fig 4.

 Fig 4 : Proposed System Architecture

 In MR-Cube algorithm, the MR-CUBE-MAP emits
key:value pairs for each batch area.
In required, keys are appended with a hash based on value
partitioning, the shuffle phase then sorts them by key. The
BUC Algorithm is run on each reducer, and the cube
aggregates are generated. All value partitioned groups need
to be aggregated to compute the final measures.
 After materializing the cube (i.e., computing measures
for all cube groups satisfying the pruning conditions) we
can identify interesting cube groups for that cube mining
algorithm is used which takes the partially materialized
cube. By using the parent group label as the primary key
and the group label as the secondary key, measures are
clustered based on the parent group level, while ensuring
sortedness on the group label. This allows a one-pass
discovery of the most interesting group for each parent
group-dimension combination. Using above mentioned
approach now it is now feasible to perform both large-
scale cube materialization and mining in the same
distributed framework.

V. CONCLUSION

Efficient Cube computation is important problem in data
cube technology. So many techniques are used for
computing cube like Multiway array aggregation, BUC,
Star Cubing, the computation of shell fragments and
parallel algorithms. BUC is sensitive to skew in the data;
the performance of BUC degrades as skew increases.
However, unlike MultiWay, the result of a parent cuboid
does not help compute that of its children in BUC. For the
full cube computation, if the dataset is dense, Star Cubing
performance is comparable with MultiWay, and is much
faster than BUC. If the data set is sparse, Star-Cubing is
significantly faster than MultiWay and BUC, in most cases.
Parallel algorithm like BPP and PT are designed for small
PC clusters and therefore cannot take advantage of the
MapReduce infrastructure. Proposed approach effectively

Dhanshri S. Lad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4057-4061

www.ijcsit.com 4060

distributes data and computation workload .Using important
subset of holistic measures we are doing cube
materialization and identifying interesting cube groups.
MR-Cube algorithm efficiently distributes the computation
workload across the machines and is able to complete
cubing tasks at a scale where previous algorithms fails.

REFERENCES
[1] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.

Venkatrao, F.Pellow, and H. Pirahesh, "Data Cube: A Relational
Operator Generalizing Group-By, Cross-Tab and Sub-Totals," Proc.
12th Int’l Conf. Data Eng. (ICDE), 1996.

[2] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R.
Ramakrishnan,and S. Sarawagi, "On the Computation of
Multidimensional Aggregates," Proc.22nd Int’l Conf. Very Large
Data Bases (VLDB), 1996.

[3] Y. Zhao, P. M. Deshpande, and J. F. Naughton.”An array-based
algorithm for simultaneous multidimensional aggregates”. In
SIGMOD'97.

[4] K. Ross and D. Srivastava, "Fast Computation of Sparse
Datacubes," Proc. 23rd Int'l Conf. Very Large Data Bases
(VLDB),1997.

[5] K. Beyer and R. Ramakrishnan, "Bottom-Up Computation of
Sparse and Iceberg CUBEs," Proc. ACM SIGMOD Int’l Conf.
Management of Data, 1999.

[6] J. Hah, J. Pei, G. Dong, and K. Wang, "Efficient Computation of
Iceberg Cubes with Complex Measures," Proc. ACM SIGMOD Int’l
Conf. Management of Data,2001.

[7] R.T. Ng, A.S.Wagner, and Y. Yin, "Iceberg-Cube Computation
with PC Clusters," Proc. ACM SIGMOD Int’l Conf. Management
of Data, 2001.

[8] D. Xin, J. Han, X. Li, and B. W. Wah. Starcubing: Computing
iceberg cubes by top-down and bottom-up integration. In VLDB'03.

[9] Xiaolei Li, Jiawei Han,Hector Gonzalez “High-Dimensional OLAP:
A Minimal Cubing Approach“ University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA.

[10] R. Jin, K. Vaidyanathan, G. Yang, and G. Agrawal,
"Communication & Memory Optimal Parallel Datacube
Construction," IEEE Trans. Parallel and Distributed Systems, vol.
16, no. 12, pp. 1105-1119, Dec. 2005.

[11] Y. Chen, F.K.H.A. Dehne, T. Eavis, and A. Rau-Chaplin,
"PnP:Sequential, External Memory and Parallel Iceberg Cube
Computation,”J. Distributed and Parallel Databases, vol. 23, pp. 99-
126, 2008.

[12] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan, “Distributed
Cube Materialization on Holistic Measures,” Proc. IEEE 27th Int’l
Conf. Data Eng. (ICDE), 2011.

[13] Arnab Nandi, Cong Yu, Philip Bohannon, and Raghu Ramakrishnan
“Data Cube Materialization and Mining over MapReduce “ IEEE
transaction on Knowledge and Data Engineering, vol. 24, no. 10,
Oct 2012.

[14] G. Cormode and S. Muthukrishnan, “The CM Sketch and Its
Applications,” J. Algorithms, vol. 55, pp. 58-75, 2005.

[15] D. Talbot, “Succinct Approximate Counting of Skewed Data,”Proc.
21st Int’l Joint Conf. Artificial Intelligence (IJCAI), 2009.

[16] K. Sergey and K. Yury, “Applying Map-Reduce Paradigm for
Parallel Closed Cube Computation,” Proc. First Int’l Conf.
Advances in Databases, Knowledge, and Data Applications
(DBKDA), 2009.

[17] J. Walker, “Mathematics: Zipf’s Law and the AOL Query
Database,” Fourmilog, 2006.

[18] K.V. Shvachko and A.C. Murthy, “Scaling Hadoop to 4000 Nodes
at Yahoo!,” Yahoo! Developer Network Blog, 2008.

[19] A. Abouzeid et al., “HadoopDB: An Architectural Hybrid of
MapReduce and DBMS Technologies for Analytical Workloads,”
Proc. VLDB Endowment, vol. 2, pp. 922-933, 2009.

Dhanshri S. Lad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4057-4061

www.ijcsit.com 4061

