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Abstract— Efficient computation of aggregations plays 
important role in Data Warehouse systems. Multidimensional 
data analysis applications aggregate data across many 
dimensions looking for anomalies or unusual patterns. The 
SQL aggregate functions and the GROUP BY operator are 
used for aggregation. But Data analysis applications need the 
N-dimensional generalization of these operators. Data Cube is 
introduced which is a way of structuring data in N-dimensions 
so as to perform analysis over some measure of interest. Data 
cube computation is essential task in data warehouse 
implementation. The precomputation of all or part of a data 
cube can greatly reduce the response time and enhance the 
performance of on-line analytical processing. There are 
several methods for cube computation, several strategies to 
cube materialization and some specific computation 
algorithms, namely Multiway array  aggregation, BUC, Star 
Cubing, the computation of shell fragments and parallel 
algorithms. But these techniques have limitation so new 
MapReduce based approach is used.  
 

Keywords— Data Cubes, Cube Computation Techniques, Star 
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I. INTRODUCTION 

     A data warehouse is a subject oriented, united, non 
volatile and time-variant collection of data organized in 
support of management decision-making. Several factors 
distinguish data warehouses from operational databases. 
Because the two systems provides quite different 
functionalities and require different kinds of data, it is 
necessary to maintain data warehouses separately from 
operational database. In Data Warehouse systems efficient 
computation of aggregations plays a key role. 
       The aggregations are mentioned to as GROUP-BY’S. 
Online Analytical Processing (OLAP)or multidimensional 
data analysis applications typically aggregate data across 
many dimensions looking for anomalies or unusual patterns. 
Computing multidimensional aggregates is a performance 
bottleneck for these applications. The SQL aggregate 
functions and the GROUP BY operator are used for 
aggregation and produce zero-dimensional or one 
dimensional aggregates respectively. Data analysis 
applications need the N dimensional generalization of these 
operators. The Data cube is the N-dimensional 
generalization of simple aggregate functions, which is 
introduced by Grey[1]. In OLAP systems, a data cube is a 
way of organizing data in N-dimensions so as to perform 
analysis over some measure of interest. Measure is a term 
used to refer numerical facts that can be algebraic 
(SUM,COUNT etc.) or non-algebraic (DISTINCT, TOP-K 

etc.).The data cube is used for conveniently supporting 
multiple aggregates in OLAP databases. It requires 
computing group-bys on all possible combinations of a list 
of attributes, and is equivalent to the union of a number of 
standard group-by operations. 
      The cube operator is widely significant to the histogram, 
roll-up, drill-down, cross-tabulation, and sub-total 
constructs. The basic cube problem is to compute all of the 
aggregates as efficiently as possible. Concurrently 
computing the aggregates offers the opportunity to share 
partitioning and aggregation costs between various group-
bys. The chief difficulty is that the cube problem is 
exponential in the number of dimensions. In addition, the 
size of each group-by depends upon the cardinality of its 
dimensions. As many techniques are proposed for efficient 
cube computation.  

Our paper is organized as follows: Firstly explanation  
of various  cubing algorithms. Next is Limitations of these 
techniques. Then  MapReduce based Approach used for 
data cube materialization and mining over massive data sets 
using important subset of holistic measure. And last the 
conclusion of our study. 

II. DIFFERENT TECHNIQUES FOR CUBE COMPUTATION 

1)  General Cube Computation with Optimizing 
Techniques : Multi- Dimensional aggregate 
computation [2] 

Authors extended  basic sort based and hash based methods 
to compute multiple group-bys by incorporating 
optimizations techniques like smallest-parent, cache-results, 
amortize-scans, share-sorts and share-partitions. 
Smallest-parent: This optimization aims at computing a   
group by from the smallest previously computed group-by. 
In this, each group-by can be computed from a number of 
other group bys.  
Cache-results: This optimization aims at caching (in 
memory) the results of a group-by from which other group-
bys are computed to reduce disk I/O. 
Amortize-scans: This optimization aims at amortizing disk 
reads by computing as many group-bys as possible, 
together in memory.  
Share-sorts: This optimization is specific to the sort-based 
algorithms and aims at sharing sorting cost across multiple 
group bys. 
Share-partitions: This optimization is specific to the hash-
based algorithms. When the hash table is too large to fit in 
memory, data is partitioned and aggregation is done for 
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each partition that fits in memory. We can save on 
partitioning cost by sharing this cost across multiple group 
bys. 

2) Top-Down Approach : Multi-Way array 
aggregation [3] 

   The computation starts from the larger group-bys and 
proceeds towards the smallest group-bys. As show in below 
Fig 1 : 
   In this, a partition-based loading algorithm designed and 
implemented to convert a relational table or 

   
                 Fig 1: Top-Down Approach  
 
external  load  file to a (possibly compressed) chunked 
array. There is no direct tuple comparisons.It perform 
Simultaneous aggregation on multiple dimensions. In 
MultiWay array aggregation  Intermediate aggregate values 
are re-used for computing ancestor cuboids .It  cannot do 
Apriori pruning means it cannot perform  iceberg cube  
optimization . 
   In Multi-Way array aggregation, It partition arrays into 
chunks (a small sub cube which fits in memory). It uses  
compressed sparse array addressing: (chunk_id, offset) and  
compute aggregates in ― “multiway” by visiting cube cells 
in the order which minimizes the # of times to visit each  
cell, and reduces memory access and storage  cost. 
 
What is the best traversing order to do multi-way 
aggregation?  
� Method: the planes should be sorted and computed 

according to their size in ascending order  
� Idea: keep the smallest plane in the main memory, fetch 

and compute only one chunk at a time for the largest 
plane.  

� Limitation of the method: computing well only for a 
small number of dimensions . 

� If there are a large number of dimensions, top-down 
computation and iceberg cube computation methods 
can be explored. 

3) Bottom-Up Approach : Bottom-Up Computation 
(BUC) [4] 

   BUC is an algorithm for sparse and iceberg cube 
computation.BUC uses the bottom-up approach that allows 
to prune unnecessary computation by recurring to A-priori 
pruning strategy. if a given cell does not satisfy minsup, 
then no discendant will satisfy minsup either.The Iceberg 

cube problem is to compute all group-bys that satisfy an 
iceberg condition.  
   First, BUC partitions dataset on dimension A, producing 
partitions a1, a2, a3, a4.Then, it recurses on partition a1,the 
partition a1 is aggregated and BUC produces <a1,*,*,*>. 

Next, it partitions a1 on dimension B. It produces 
<a1,b1,*,*> and recurses on partition a1,b1. Similarly, it 
produces <a1,b1,c1,*> and then <a1,b1,c1,d1>. Now, it 
returns from recursion and produces <a1,b1,c1,d2> etc. 
After processing partition a1, BUC processes partition a2 
and so on as shown in Fig.2 below, 

 
Fig 2 : BUC Partitioning 

 
 BUC is sensitive to data skew and to the order of the 
dimensions processing first most discriminating dimensions 
improves performance. It shares  partitioning costs.BUC 
does not share computation between parent and child 
cuboids. 

4) Mixed Approach : Star cubing [8] 

   Star Cubing integrate the top-down and bottom-up 
methods. It explore shared dimensions .E.g., dimension A is 
the shared dimension of ACD and AD. ABD/AB means 
cuboid ABD has shared dimensions AB. Star cubing allows 
for shared computations .e.g., cuboid AB is computed 
simultaneously as ABD . Star Cubing  aggregate in a top-
down manner but with the bottom-up sub-layer underneath 
which will allow Apriori pruning. It’s shared dimensions 
grow in bottom-up fashion. As shown in Fig 3. 

 
Fig 3 : An Integrating method : Star Cubing 
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Star-Cubing Algorithm—DFS on Lattice Tree  
Properties of Proposed Method  
Partitions the data vertically  
Reduces high-dimensional cube into a set of lower   
       dimensional cubes  
Online re-construction of original high-dimensional              
        space 
Lossless reduction  
Offers tradeoffs between the amount of pre-processing and 
the speed of online computation  
Further Implementation Considerations  
Incremental Update:  
Append more TIDs to inverted list  
Add <tid: measure> to ID_measure table  
Incremental adding new dimensions  
Form new inverted list and add new fragments  
Bitmap indexing  
May further improve space usage and speed  
Inverted index compression  
Store as d-gaps  
Explore more IR compression methods 

5) High-Dimensional OLAP : A Minimal Cubing      
Approach [9] 

    In many applications, like bioinformatics, statistics and 
text processing, datasets are characterized by high 
dimensionality e.g. over 100 dimensions -> 2100 cuboids in 
a full cube. As huge cube there is infeasible computation 
time. Iceberg cube is not an ultimate solution as it cannot be 
incrementally updated. In this low minsup requires too 
space and high minsup gives no significant results.  
   A minimal cubing approach, a new semi-online 
computational model is based on the computation of shell 
fragments. This method partitions ‘vertically’ a high 
dimensional dataset into a set of disjoint low dimensional 
datasets called fragments. Then, for each fragment, it 
computes local data cube. In shell fragment efficiency is 
obtained by using inverted index, i.e. a list of record-ids 
associated to each dimension value. Given the pre-
computed fragment cubes, intersection among fragments is 
performed online by re-assembling cuboids of the required 
data cube. It reduces high dimensionality of the data cube to 
lower dimensionality.Online operations of re-construction 
of original dimensional space. There is Tradeoffs between 
the pre-processing phase and the performance of online 
computation. 

6)  Parallel Approaches [7]  : 

    Parallel Algorithms are introduced for cube computation 
over  small PC clusters. Algorithm BPP (Breadth-first 
Writing, Partitioned, Parallel BUC), in which the dataset is 
not replicated, but is range partitioned on an attribute basis. 
The output of cuboids is done in a breadth-First fashion, as 
opposed to the depth-first writing that BUC do.  In Depth 
First writing, cells may belong to different cuboids. For 
example, the cell a1 belongs to cuboid A, the cell a1b1 to 
cuboid AB, and the cells a1b1c1 and a1b1c2 belong to 
ABC. The point is that cuboids is scattered. This clearly 
incurs a high I/O over-head. It is possible to use buffering 
to help the scattered writing to the disk. However, this may 

require a large amount of buffering space, thereby reducing 
the amount of memory available for the actual computation. 
Furthermore, many cuboids may need to be maintained in 
the buffers at the same time, causing extra management 
overhead. In BPP, this problem is solved by breadth-first 
writing, implemented by first sorting the input dataset on 
the “prefix” attributes. Breadth-First I/O is a significant 
improvement over the scattering I/O used in BUC.  
    Another Parallel algorithm PT (Partitioned Tree) works 
with tasks that are created by a recursive binary division of 
a tree into two sub trees having an equal number of nodes. 
In PT, there is a parameter that controls when binary 
division stops.PT tries to exploit a affinity scheduling. 
During processor assignment, the manager tries to assign to 
a worker processor a task that can take advantage of prefix 
affinity based on the root of the subtree.PT is top-down. But 
interestingly, because each task is a sub tree, the nodes 
within the sub tree can be traversed/computed in a bottom-
up fashion. In fact, PT calls BPP-BUC, which offers 
breadth-first writing, to complete the processing. Algorithm 
PT load-balances by using binary partitioning to divide the 
cube lattice as evenly as possible PT is the algorithm of 
choice for most situations. 

III. LIMITATIONS OF EXISTING TECHNIQUES 

There are three main limitations in the existing techniques: 
1.  They are designed for a single machine or clusters with 

small number of nodes [16]. It is  difficult to process 
data with  a single (or a few) machine(s) at many 
companies where data storage is huge (e.g., terabytes 
per day)  

2.  Many of the techniques use the algebraic measure [1] 
and use this property to avoid processing groups with a 
large number of tuples. This allows parallelized 
aggregation of data subsets whose results are then post 
processed to derive the final result. Many important 
analyses over logs, involve computing holistic 
(i.e.,nonalgebraic) measures. Holistic measures pose 
significant challenges for distribution. 

3.  Existing techniques failed to detect and avoid extreme 
data skew. 

        Extension of cube analysis usage can be avoided by 
these limitations. There is need of technique to compute 
cube efficiently in parallel and identification of interesting 
cube groups on important subset of holistics measures over 
massive data sets. Hadoop based Mapreduce [8] 
environment handles large amount of data in clusters with 
thousands of machines. So MapReduce based technique 
which supports holistic measures is best option for data 
analysis. It helps to detect extreme data skew problem. 

IV. MAPREDUCE BASED APPROACH 

     Mapreduce [19] is rapidly becoming one of most 
popular parallel execution frameworks. Introduced in 2004 
by Google Corporation, it automatically parallelizes task 
execution, given that users formulate algorithm as map and 
reduce steps. Data partitioning, fault tolerance, execution 
scheduling are provided by mapreduce framework itself.     
Mapreduce was designed to handle large data volumes and  
huge clusters (thousands of servers). MapReduce is a 

Dhanshri S. Lad et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4057-4061

www.ijcsit.com 4059



programming framework that allows to execute user code in 
a large cluster. Hadoop [18] is an open-source 
implementation of this framework. All the user has to write 
two functions: Map and Reduce. 
 During the Map phase, the input data are 
distributed across the mapper machines, where each 
machine then processes a subset of the data in parallel and 
produces one or more <key; value> pairs for each data 
record. Next, during the Shuffle phase, those <key, value> 
pairs are repartitioned (and sorted within each partition) so 
that values corresponding to the same key are grouped 
together into values {v1; v2; :::} Finally, during the Reduce 
phase, each reducer machine processes a subset of the 
<key,{v1; v2; :::}> pairs in parallel and writes the final 
results to the distributed file system. The map and reduce 
tasks are defined by the user while the shuffle is 
accomplished by the system. 
So MR-Cube, a MapReduce-based algorithm was 
introduced [13] for efficient cube computation and 
identification of interesting cube groups on holistic 
measures. Here each  node in the lattice represents one 
possible grouping/aggregation. We use the term cube region 
to denote a node in the lattice and the term cube group to 
denote an actual group belonging to the cube region. First 
we begin by identifying a subset of holistic measures that 
are easy to compute in parallel than an arbitrary holistic 
measure. We call them partially algebraic measures. This 
notion is inspired by common ad hoc practices for 
computing a single holistic measure from an extremely 
large number of data tuples.  
     Then two techniques needed for effectively distribute the 
data and computation workload. Value Partitioning is used 
for effectively distribute data for that we are going to run 
Naïve Algorithm [12].we want to perform value 
partitioning only on groups that are likely to be reducer-
unfriendly and dynamically adjust the partition factor. we 
adopt a sampling approach where we estimate the reducer-
unfriendliness of each cube region based on the number of 
groups it is estimated to have, and perform  partitioning for 
all groups within the list of cube regions (a small list) that 
are estimated  to be reducer unfriendly. 
      For effectively distribute computation we use 
partitioning technique called Batch Area. Each batch area 
represents a collection of regions that share a common 
ancestor region.  
     The combined process of identifying and value-
partitioning unfriendly regions followed by the partitioning 
of regions into batches is referred to as ANNOTATE .So 
lattice formed is annotated lattice. 
       Extreme Data skew is most important challenge which 
occurs if a few cube groups are unusually large even when 
they belong to a cube region at the top of the lattice (i.e., 
those with fine granularities).This causes value partitioning 
to be applied to the entire cube and therefore reduces the 
efficiency of algorithm. We are looking into the use of 
compressed counting data structures such as CM-Sketch 
[14][17] and Log-Frequency Sketch [15] as a solution. 
After Extreme data skew detection and try to avoid same, 
we are using MR-Cube algorithm [13] for cube 
materialization and identifying interesting cube groups. 

Propose system architecture is given in below Fig 4. 
 

 
                  Fig 4 : Proposed System Architecture 
 
     In MR-Cube algorithm, the MR-CUBE-MAP emits 
key:value  pairs for each batch area.  
In required, keys are appended with a hash based on value 
partitioning, the shuffle phase then sorts them by key. The 
BUC Algorithm is run on each reducer, and the cube 
aggregates are generated. All value partitioned groups need 
to be aggregated to compute the final measures. 
      After materializing the cube (i.e., computing measures 
for all cube groups satisfying the pruning conditions) we 
can identify interesting cube groups for that cube mining 
algorithm is used which takes the partially materialized 
cube. By using the parent group label as the primary key 
and the group label as the secondary key, measures are 
clustered based on the parent group level, while ensuring 
sortedness on the group label. This allows a one-pass 
discovery of the most interesting group for each parent 
group-dimension combination. Using above mentioned 
approach   now it is now feasible to perform both large-
scale cube materialization and mining in the same 
distributed framework. 

V. CONCLUSION 

Efficient Cube computation is important problem in data 
cube technology. So many techniques are used for 
computing cube like Multiway array aggregation, BUC, 
Star Cubing, the computation of shell fragments and 
parallel algorithms. BUC is sensitive to skew in the data; 
the performance of BUC degrades as skew increases. 
However, unlike MultiWay, the result of a parent cuboid 
does not help compute that of its children in BUC. For the 
full cube computation, if the dataset is dense, Star Cubing 
performance is comparable with MultiWay, and is much 
faster than BUC. If the data set is sparse, Star-Cubing is 
significantly faster than MultiWay and BUC, in most cases. 
Parallel algorithm like BPP and PT are designed for small 
PC clusters and therefore cannot take advantage of the 
MapReduce infrastructure.  Proposed approach effectively 
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distributes data and computation workload .Using important 
subset of holistic measures we are doing cube 
materialization and identifying   interesting cube groups. 
MR-Cube algorithm efficiently distributes the computation 
workload across the machines and is able to complete 
cubing tasks at a scale where previous algorithms fails. 
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